Принцип работы масляного трансформатора

Содержание:

В устройстве трансформатора с масляным охлаждением нет ничего сложного. Его основным элементом является ферромагнитный сердечник на который намотаны две обмотки. В некоторых моделях их может быть больше. Но есть и такие, где только одна обмотка. Они получили название автотрансформаторов.

Устройство масляного трансформатора
Схема устройства масляного трансформатора

Отличия в конструкции от сухого трансформатора не ограничиваются только числом обмоток. Они касаются и типа сердечника.

Также в состав устройства трансформатора с масляным охлаждением включены системы:

  • Магнитная;
  • Охлаждения.
Трехфазный силовой трансформатор мощностью 1000 кВ•А с масляным охлаждением

Основой конструкции силового двухобмоточного трансформатора (рис. 116) является его активная часть, состоящая из магнитопровода 6 с расположенными на нем обмотками низшего (НН) и высшего 3 (ВН) напряжений, отводов 8 и переключателя напряжения 9. Магнитопровод 6 трансформатора набирается из листов специальной электротехнической стали толщиной 0,35 или 0,5 мм. Отдельные части магнитопровода собирают в жесткую конструкцию из трех вертикальных стержней с верхним 5 и нижним 2 ярмами с помощью стяжных шпилек и прессующих ярмовых балок, образуя замкнутый контур. Между собой листы стали изолированы лаком или теплостойким покрытием на основе жидкого стекла. Ярмовыми балками из швеллеров листы стали магнитопровода плотно опрессовывают при помощи шпилек. Ярмовые балки и шпильки изолируют от активной стали магнитопровода. Активная часть трансформатора помещается в металлический бак, который предохраняет обмотки от повреждений и является резервуаром для трансформаторного масла.

Обмотки трансформаторов изготовляют из электротехнической меди или алюминия прямоугольного или круглого сечения. Чаще всего применяют цилиндрические и винтовые обмотки. Их отделяют от сердечника, друг от друга и от стенок бака цилиндрами из изолирующего материала (бакелита).

Цилиндрические обмотки выполняют из круглых или прямоугольных проводов с изоляцией из хлопчатобумажной пряжи и наматывают в один слой (однослойная), в два слоя (двухслойная) или несколько слоев (многослойная) одним или несколькими проводами по винтовой линии.

Однослойная (а), двухслойная (б) и многослойная (в) конструкции цилиндрических обмоток
Однослойная (а), двухслойная (б) и многослойная (в) конструкции цилиндрических обмоток силовых трансформаторов: 1 — выравнивающие кольца; 2 — коробочка из электрокартона; 3 — конец первого слоя обмотки; 4 — планка из бука; 5 — отводы для регулирования напряжения.

Начала и концы обмоток располагают на их противоположных торцах. Однослойные и двухслойные обмотки применяются в качестве обмоток низкого напряжения, а многослойные — в качестве обмоток ВН в трансформаторах мощностью до 630 кВ•А.

Цилиндрические многослойные обмотки изготовляют из круглого провода, намотанного на бумажно-бакелитовый цилиндр, плотно укладывая витки слоями и прокладывая между ними листы кабельной бумаги (рис. 117, в). При большом числе слоев между ними укладывают планки из древесины твердых пород или из нескольких слоев полосок склеенного электрокартона, образуя вертикальные каналы. Такая конструкция обеспечивает хороший отвод теплоты для охлаждения обмотки. Для увеличения механической прочности обмотку обматывают хлопчатобумажной лентой, пропитывают глифталевым лаком и запекают при температуре около 100 С.

В более мощных трансформаторах применяют непрерывные обмотки из плоских проводов без разрывов и паек при переходе из одной катушки в другую. Эти обмотки наматываются на рейки, уложенные на бумажно-бакелитовом цилиндре и образующие в своих промежутках вертикальные каналы охлаждения, а горизонтальные каналы создаются с помощью пакетов из электротехнического картона, собранных на проваренных в масле деревянных планках. Они применяются в силовых трансформаторах в качестве обмоток низшего и высшего напряжения.

Баки силовых трансформаторов изготовляют из листовой стали. Они могут быть овальной или прямоугольной форм. Баки изготовляют гладкими, а для лучшего охлаждения масла — ребристыми, трубчатыми и с радиаторами. Баки устанавливают на катки для перемещения трансформаторов в пределах помещения подстанции. Сверху бак закрывается съемной крышкой, на которой размещают вводные изоляторы, термометр, пробивной предохранитель, переключатель отводов обмотки для регулирования напряжения, расширитель, газовое реле и предохранительную трубу.

Для присоединения обмоток к токопроводящим шинам применяют фарфоровые изоляторы, через которые проходят медные стержни.

Изоляционное масло в трансформаторе используется в качестве изолирующей и охлаждающей среды. В процессе эксплуатации трансформатора масло стареет и теряет свои первоначальные изоляционные свойства за счет воздействия на него кислорода, влаги, грязи и высокой температуры.

Для измерения температуры верхних слоев масла в трансформаторах мощностью до 1000 кВ•А применяют стеклянный термометр с шкалой от -20 до +100 ºС, а в трансформаторах свыше 1000 кВ•А — термометрический сигнализатор ТС-100, который служит для контроля температуры масла и для сигнализации или отключения трансформатора при превышении температуры свыше допустимого предела.

В тех случаях, когда вторичные сети имеют изолированную от земли нейтраль, для безопасной работы применяется пробивной предохранитель, имеющий воздушные промежутки. В аварийном режиме воздушные промежутки пробиваются и обмотка низкого напряжения заземляется.

На маслоуказателе бака расширителя масляного трансформатора нанесены три контрольные черты, соответствующие уровню масла при температуре -45, +15, +40.

Расположение на крышке трансформатора расширителя
Расположение на крышке трансформатора расширителя, газового реле и предохранительной трубы: 1 — расширитель; 2 — газовое реле; 3 — предохранительная труба.

Газовая защита и газовое реле служит для сигнализации или отключения трансформатора в случаях внутренних повреждений. Разлагающиеся под действием высоких температур масло, дерево или изоляция выделяют газы, которые воздействуют на поплавки с контактами газового реле. В случае отказа работы газового реле в трансформаторе создается повышенное давление, которое разрушает мембрану предохранительной трубы и выбрасывает газы и масло наружу, предотвращая опасность взрыва бака. Мембрана трубы изготовляется из стекла или фольги.

Масляный трансформатор имеет некоторые отличия в устройстве.

И самым главным из них являются компактные размеры.

Обычно он выпускается таких габаритов, которые позволяют легко размещать прибор в любом помещении и даже использовать его в уличных условиях. Корпус прибора имеет защиту от агрессивного воздействия окружающей среды. Внутри него располагается гильза для жидкостного термометра. Он используется для контроля за температурой верхних слоев масла.

Балки, на которых крепятся обмотки защищены особым корпусом. На крышке имеются специальные проходные изоляторы. Они предназначены для проведения цепей, связанных с обмоткой и обеспечивают безопасную работу устройства.

Над крышкой корпуса установлен расширитель. Его соединение с баком выполнено при помощи трубопровода с газовым реле. Для вывода наружу вредных газов используется специальная выхлопная труба. Управление работой трансформатора осуществляется при помощи специальной рукоятки, установленной на крышке бака.

В герметичных масляных трансформаторах и трансформаторах с жидким негорючим диэлектриком поверхность масла защищают сухим азотом, а в заполненных совтолом -10 — сухим воздухом.

Негерметичные масляные трансформаторы мощностью 160 кВ- А и более, в которых масло в расширителе соприкасается с окружающим воздухом, имеют термосифонный или адсорбционный фильтр, а трансформаторы мощностью 1 мВ • А и более с естественным масляным охлаждением и азотной подушкой — термосифонный фильтр (кроме трансформаторов с жидким негорючим диэлектриком).

Защита масляного силового трансформатора

Предохранители трансформатора  служат для защиты от пробоя обмоток ВН на обмотки НН.

Устанавливают их на крышке бака и подсоединяют к нулевому вводу НН, а при напряжении 690 В — к линейному вводу.

При пробое изоляции между обмотками ВН и НН промежуток между контактами, в котором проложены тонкие слюдяные пластины с отверстиями, пробивается и вторичная обмотка оказывается соединенной с землей.

Заземление масляного трансформатора

Заземление масляного трансформатора.

Для заземления трансформаторов служит специальный заземляющий контакт с резьбой не менее Ml2, расположенный в доступном месте нижней части бака со стороны НН и обозначенный четкой несмывающейся надписью «Земля» или знаком заземления.

Поверхность заземляющего контакта должна быть гладкой и зачищенной; заземление осуществляют подсоединением стальной шины сечением не менее 40><4 мм.

Для измерения температуры масла на трансформаторах монтируют ртутные термометры со шкалой от 0 до 150° С или термометрические сигнализаторы ТС со шкалой от 0 до 100° С. Последние снабжены двумя передвижными контактами, которые можно установить на любую температуру в пределах шкалы.

Первый контакт, будучи включенным в сигнальную цепь, при определенной температуре масла дает сигнал; в случае дальнейшего повышения температуры масла второй контакт, соединенный с реле, отключает трансформатор. На трансформаторах мощностью 6300 кВ * А и выше установлены термометры сопротивления.

Для сушки и очистки увлажненного и загрязненного воздуха, поступающего в расширитель при температурных колебаниях масла, все трансформаторы снабжены воздухоочистительным фильтром — воздухоосушителем, который представляет собой цилиндр, заполненный силикагелем и размещенный на дыхательной трубке расширителя.

Причины нагрева масляного трансформатора

Трансформаторы – электрические устройства, которые используются для трансформации энергии в процессе передачи по цепям.

В процессе работы они нагреваются, что в принципе некритично, если избыточная температура не превышает той, на которую рассчитаны обмотки.

Тем не менее, вопрос – почему и как греется трансформатор – является актуальным, ибо перегрев может свидетельствовать о неисправностях техники. Это может привести к риску пожара трансформатора или отключения от электроснабжения потребителей.

Основные причины перегрева масляного трансформатора наблюдается в следующих случаях:

  1. Эксплуатация оборудования в нештатном режиме;
  2. Плохая вентиляция и/или охлаждение;
  3. Неудовлетворительное состояние обмоток;
  4. Сбой в работе автоматики;
  5. Неправильное подключение;
  6. Ненадёжное заземление.

Какой срок службы масляного трансформатора

Срок службы не менее 25 – 50 лет

Признаки неисправности работы силовых трансформаторов при эксплуатации

Перегрузка трансформатора

Необходимо проверить нагрузку трансформатора. У трансформаторов с постоянной нагрузкой перегрузку можно установить по амперметрам, у трансформаторов с неравномерным графиком нагрузки – путем снятия суточного графика по току.

Следует также иметь в виду, что трансформаторы допускают нормальные перегрузки, зависящие от графика нагрузки, температуры окружающей среды и недогрузки в летнее время. Кроме того, допускаются аварийные перегрузки трансформаторов независимо от предшествующей нагрузки и температуры охлаждающей среды.

Допустимые превышения температуры отдельных частей трансформатора и масла над температурой охлаждающей среды, воздуха или воды не должны превышать нормативных значений. Если указанные мероприятия не дают должного эффекта, необходимо разгрузить трансформатор, включив на параллельную работу еще один трансформатор или отключив менее ответственных потребителей.

Высокая температура трансформаторного помещения.

Необходимо измерить температуру воздуха в трансформаторном помещении на расстоянии 1,5–2 м от бака трансформатора на середине его высоты. Если эта температура более чем на 8–10 °С превышает температуру наружного воздуха, необходимо улучшить вентиляцию трансформаторного помещения.

Низкий уровень масла в трансформаторе.

В данном случае обнаженная часть обмотки и активной стали сильно перегревается; убедившись в отсутствии течи масла из бака, необходимо долить масло до нормального уровня.

Внутренние повреждения трансформатора: замыкания между витками, фазами; образование короткозамкнутых контуров из-за повреждения изоляции болтов (шпилек), стягивающих активную сталь трансформатора; замыкания между листами активной стали трансформатора.

Все эти недостатки при незначительных короткозамкнутых контурах, несмотря на высокую местную температуру, обычно не всегда дают заметное повышение общей температуры масла, и развитие этих повреждений ведет к быстрому росту температуры масла.

Внутренние повреждения трансформатора

Замыкания между витками, фазами; образование короткозамкнутых контуров из-за повреждения изоляции болтов (шпилек), стягивающих активную сталь трансформатора; замыкания между листами активной стали трансформатора.

Все эти недостатки при незначительных короткозамкнутых контурах, несмотря на высокую местную температуру, обычно не всегда дают заметное повышение общей температуры масла, и развитие этих повреждений ведет к быстрому росту температуры масла.

Ненормальное гудение в трансформаторе

Ослабла прессовка шихтованного магнитопровода трансформатора. Необходимо подтянуть прессующие болты.

Нарушена прессовка стыков в стыковом магнитопроводе трансформатора. Под влиянием вибрации магнитопровода ослабла затяжка вертикальных болтов, стягивающих стержни с ярмами, это изменило зазоры в стыках, что и вызвало усиленное гудение. Необходимо перепрессовать магнитопровод, заменив прокладки в верхних и нижних стыках листов магнитопровода.

Вибрируют крайние листы магнитопровода трансформатора.

Необходимо расклинить листы электрокартоном.

Ослабли болты, крепящие крышку трансформатора, и прочие детали. Необходимо проверить затяжку всех болтов.

Трансформатор перегружен или нагрузка фаз отличается значительной несимметричностью.

Необходимо устранить пере-грузку трансформатора или уменьшить несимметрию нагрузки потребителей.

Возникают замыкания между фазами и витками.

Необходимо отремонтировать обмотку.

Трансформатор работает при повышенном напряжении. Необходимо установить переключатель напряжения (при его нали-чии) в положение, соответствующее повышенному напряжению.

Потрескивание внутри трансформатора

Перекрытие (но не пробой) между обмоткой или отводами на корпус вследствие перенапряжений. Необходимо осмотреть и отремонтировать обмотку.

Обрыв заземления. Как известно, активная сталь и все прочие детали магнитопровода в трансформаторе заземляются для отвода в землю статических зарядов, появляющихся на этих частях, так как обмотка и металлические части магнитопровода – это, по существу, – обкладки конденсатора.

При обрыве заземления могут происходить разряды обмотки или ее отводов на корпус, что воспринимается как треск внутри трансформатора.

Необходимо восстановить заземление до того уровня, на котором оно было выполнено заводом-изготовителем: присоединить заземление в тех же точках и с той же стороны трансформатора, т. е. со стороны выводов обмотки низшего напряжения. Однако при неправильном восстановлении заземления в трансформаторе могут возникнуть короткозамкнутые контуры, в которых могут появиться циркулирующие токи.

Системы охлаждения масляных трансформаторов применяемые в отечественном трансформаторостроении

В настоящее время в отечественных масляных трансформаторах применяются системы охлаждения, приведенные в табл. 1.

Обозначение системы охлаждения
Циркуляция масла Охлаждение масла по ГОСТ по МЭК
Естественная Естественное воздушное М ONAN
Естественная Принудительное воздушное Д ONAF
Принудительная Естественное воздушное МЦ OFAN
Принудительная Принудительное воздушное ДЦ OFAF
Естественная Принудительное водяное MB ONWF
Принудительная Принудительное водяное Ц OFWF
Принудительная направленная Принудительное воздушное НДЦ ODAF
Принудительная направленная Принудительное водяное НЦ ODWF

Система охлаждения М

При этом виде охлаждения теплота, выделяющаяся в активной части и элементах металлоконструкции трансформатора, передается путем естественной конвекции маслу, которое, в свою очередь, отдает его в окружающий воздух также путем естественной конвекции и излучения. В трансформаторах небольшой мощности (до нескольких десятков кВ-А) теплоотдающей поверхности баков достаточно для отвода выделяющейся теплоты при нормированном превышении температуры масла. В трансформаторах большей мощности приходится ее искусственно увеличивать путем применения ребристых и трубчатых баков или баков с навесными или выносными радиаторами.

Система охлаждения Д

В трансформаторах мощностью более 6,3—10 MB-А затруднительно развить теплоотдающую поверхность бака в такой мере, чтобы обеспечить заданный уровень нагрева. Это становится понятным, если учесть, что согласно законам роста в серии подобных трансформаторов (т. е. в таких, в которых соответствующие линейные размеры пропорциональны) при постоянстве электромагнитных нагрузок (индукции в магнитопроводе, и плотности тока в обмотках) потери растут пропорционально кубу линейных размеров, тогда как охлаждающие поверхности растут пропорционально квадрату этих размеров.

Поэтому приходится принимать дополнительные меры для усиления охлаждения путем обдува радиаторов вентиляторами. Тем самым увеличивается в 1,5—2 раза коэффициент теплопередачи и соответственно теплосъем радиаторов. При снижении температуры верхних слоев масла до 50С, если при этом ток нагрузки меньше номинального, вентиляторы отключаются.

Система охлаждения МЦ

Эта система охлаждения в отечественной промышленности применяется редко. При такой системе благодаря принудительной циркуляции масла с помощью насоса достигается более равномерное распределение температуры масла по высоте бака трансформатора и снижение температуры верхних слоев масла.

Система охлаждения ДЦ

В трансформаторах мощностью около 100 MB-А и более выделяющиеся потери настолько значительны, что для их отвода приходится применять специальные масляно-воздушные охладители, обдуваемые вентиляторами и оснащенные насосами для принудительной циркуляции масла. Для увеличения эффективности обдува трубы в таких охладителях имеют сильно развитую ребристую наружную поверхность. Благодаря принудительной циркуляции масла достигается более равномерное распределение температуры масла по высоте бака. Разница температуры масла вверху и внизу бака составляет в данном случае менее 10°С, в то время как при естественной циркуляции она достигает 20—30°С.

Выпускаемые в настоящее время отечественной промышленностью охладители имеют теплосъем 160—180 кВт. В случае отключения системы охлаждения трансформаторы могут оставаться включенными очень непродолжительное время, так как теплоотдающей поверхности бака недостаточно даже для отвода потерь холостого хода. Недостатком такой системы охлаждения является то, что теплоотдача от обмоток к маслу остается практически такой же, как и при естественной конвекции, так как принудительная циркуляция масла происходит только в зоне между наружной обмоткой и стенкой бака трансформатора.

Система охлаждения MB.
В отечественном трансформаторостроении эта система охлаждения не получила широкого распространения. Для охлаждения масла используется вода, циркулирующая в трубах, размещенных в верхней части бака, в зоне наиболее горячего масла. Вода прогоняется по трубам с помощью насосов.

Система охлаждения Ц.

Эта очень эффективная и компактная система охлаждения применяется для мощных трансформаторов тогда, когда имеется достаточное количество воды (гидростанции, очень мощные тепловые станции). Она позволяет отказаться от системы охлаждения ДЦ, которая при очень большой мощности трансформаторов становится достаточно громоздкой. Эта система охлаждения основана на применении масляно-водяных охладителей с гладкими или оребренными трубами и движением воды по трубам, а масла — в межтрубном пространстве. Благодаря конструктивным мероприятиям обеспечивается зигзагообразное движение масла в охладителе с поперечным обтеканием трубок.

Большой теплосъем (до 1000 кВт и более) и малые габаритные размеры масляно-водяных охладителей достигаются благодаря увеличению коэффициента теплоотдачи от стенки трубы при охлаждении ее водой. При отключении этой системы охлаждения, как и при системе ДЦ, трансформаторы могут оставаться в работе также очень ограниченное время. Недостаток этой: системы охлаждения в части интенсивности охлаждения обмоток тот же, что и системы охлаждения ДЦ.

Системы охлаждения с направленной циркуляцией масла в обмотках НДЦ и НЦ

Улучшить охлаждение обмоток и обеспечить при этом более равномерное распределение в них температуры можно путем создания принудительной (направленной) циркуляции масла в охлаждающих каналах обмоток с требуемой скоростью, обеспечивающей необходимый температурный режим. Здесь возможны два варианта исполнения — с одноконтурной и двухконтурной схемами циркуляции масла. В первом варианте масло, забираемое из верхней части бака, проходит через масляно-воздушные или масляно-водяные охладители и подается в обмотки. Во втором варианте кроме контуров охлаждения масла, аналогичных системам ДЦ или Ц, существуют независимые контуры охлаждения обмоток, причем масло, забираемое насосом из верхней части бака, подается, минуя охладители, в нижнюю часть бака и далее в контуры охлаждения обмоток. Второй вариант исполнения системы охлаждения несколько сложнее и дороже.

Эта система охлаждения позволяет при необходимости (например, в трансформаторах предельных мощностей) повысить электромагнитные нагрузки, но она усложняет конструкцию изоляции и обмоток, а также технологию сборки и испытаний трансформаторов (необходимы гидравлические испытания контуров циркуляции масла в обмотке). Поэтому такие системы применяются в отечественном трансформаторостроении для трансформаторов мощностью 400 MB-А и выше.

Видео: Масляный трансформатор принцип работы

Принцип работы масляного трансформатора

Добавить комментарий

Ваш адрес email не будет опубликован.

один × 4 =

wp-puzzle.com logo

Пролистать наверх
Adblock
detector