Высоковольтный стабилизатор напряжения постоянного тока

При построении высококачественных высоковольтных стабилизаторов напряжения, например, для питания ламповых каскадов, приходиться применять специальные схемы включения регулировочных элементов, что усложняет схемотехнику таких стабилизаторов.

Между тем, существуют интегральные микросхемы, применяя которые можно создавать простые высоковольтные стабилизаторы напряжения компенсационного типа на выходное напряжение от 70 до 140 В. Это микросхемы типов SE070N, SE080N, SE090N, SE105N, SE110N, SE120N, SE125N, SE130N, SE135N, SE140N. Эти микросхемы предназначены для контроля и регулировки напряжения постоянного тока.

Как нетрудно догадаться, цифровое обозначение в маркировке микросхемы будет соответствовать рабочему напряжению микросхемы в вольтах.

На рис. 1 показан один из возможных вариантов линейного стабилизатора на выходное напряжение 115 В постоянного тока. источником напряжения для стабилизатора служит сеть переменного тока 220 В. В других конструкциях источником напряжения может быть, например, вторичная обмотка силового трансформатора, выход выпрямителя преобразователя напряжения. Стабилизатор выполнен на интегральной микросхеме SE115N, представляющей собой детектор напряжения на 115 В. Контролируемое напряжение с выхода стабилизатора поступает на вход DA1 — вывод 1.

Высоковольтный стабилизатор напряжения постоянного тока
Рис. 1. Высоковольтный стабилизатор напряжения постоянного тока

Если напряжение на выходе стабилизатора стремится увеличиться свыше рабочего напряжения DA1, то открывается выходной n-p-n транзистор микросхемы, коллектор которого выведен на вывод 2 DA1. Это приводит к тому, что понижается напряжение затвор-исток VT1 что приводит к понижению выходного напряжения стабилизатора. На мощном высоковольтном полевом n-канальном транзисторе VT1 выполнен истоковый повторитель напряжения.

Сетевое напряжение переменного тока поступает на мостовой диодный выпрямитель VD1 — VD4. Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Резистор R1 уменьшает бросок тока через выпрямительные диоды и разряженный конденсатор С1, возникающий при включении устройства в сеть. Стабилитрон VD5 защищает полевой транзистор от пробоя высоким напряжением затвор-исток.

Светящийся светодиод HL1 сигнализирует о наличии выходного напряжения, кроме того, цепь R3HL1 разряжает оксидные конденсаторы при отключенной нагрузке.

Резистор R1 должен быть проволочным.

Его сопротивление и мощность выбирают исходя из параметров подключенной к стабилизатору нагрузки. Остальные резисторы любые из С2-33, МЛТ, РПМ соответствующей мощности. Сопротивление резистора R2 выбирают исходя из входного напряжения стабилизатора, при этом следует учитывать, что максимальный втекающий ток DA1 по выводу 2 не должен превышать 20 мА. Конденсаторы типа К50-68 или импортные аналоги.

Если в вашей конструкции С1 будет, как и по схеме рис. 1, подключен к выходу мостового выпрямителя напряжения переменного тока 50 Гц, то его емкость следует выбирать исходя из 4 мкФ на каждый 1 Вт нагрузки. В общем случае, емкость конденсатора С2 должна быть равна емкости конденсатора С1 Выпрямительные диоды 1N4007 можно заменить, например, на 1N4006, UF4006, RL105, КД234Д. Вместо стабилитрона BZV55C-12 подойдет BZV55C-13, 1N4743A, 2С212Ц, КС212Ц. Светодиод подойдет любого типа непрерывного свечения, желательно с повышенной светоотдачей. Полевой МДП транзистор HV82 рассчитан на максимальный ток стока 6,5 А, напряжение сток-исток 800 В и максимальную рассеиваемую мощность 150 Вт (с теплоотводом). В этой конструкции его можно заменить, например, на IRF350, IRF352 или другой, подходящий по параметрам к подключенной нагрузке.

Следует учитывать, что если, например, к выходу стабилизатора подключена нагрузка мощностью 30 Вт, то при питании устройства от сети 220 В, на транзисторе VT1 будет рассеиваться мощность около 80 Вт. Если же входным напряжением для стабилизатора будет, например, напряжение +180 В (выход выпрямителя «лампового» трансформатора), то при выходном напряжении 115 В и токе нагрузки 0,5 А установленный на теплоотвод транзистор будет рассеивать около 33 Вт тепловой мощности. Это немало, поэтому, линейные высоковольтные стабилизаторы напряжения целесообразно применять для питания слаботочной нагрузки, например, лампового активного щупа для осциллографа и в других местах, где применение импульсных высоковольтных стабилизаторов напряжения нежелательно.

печатная плата, высоковольтный стабилизатор
Устройство может быть смонтировано на печатной плате размерами 105×50 мм, эскиз которой показан на рис. 2.

Ток потребления микросхемы SE115N по выв. 1 около 3 мА. Для увеличения выходного напряжения стабилизатора в цепь вывода 3 DA1 можно включить стабилитрон. Например, если у вас имеется микросхема SE140N «на 140 В», а вам нужен стабилизатор на выходное напряжение 180 В, то нужно последовательно с выв. 3 включить стабилитрон 1N4755A или два последовательно включенных стабилитрона КС520В. Через стабилитрон будет протекать сумма токов через выв. 1 и 2 DA1. Кроме высоковольтных интегральных микросхем SE***N существуют также и низковольтные SE005N, SE012N, SE024N, SE034N, SE040N, на которых также можно изготавливать компенсационные стабилизаторы напряжения. Стабилизатор напряжения, изготовленный по тому же принципу, который показан на рис. 1, должен иметь входное напряжение постоянного тока (на обкладках С1), превышающее выходное не менее чем на 8 В.

При изготовлении конструкции, собранной по рис. 1, учитывайте, что все ее элементы находятся под напряжением сети.

Высоковольтный стабилизатор напряжения постоянного тока

Добавить комментарий

Ваш адрес email не будет опубликован.

двадцать + 18 =

wp-puzzle.com logo

Пролистать наверх
Adblock
detector