Импульсный трансформатор

Импульсный трансформатор (ИТ) — это трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Особенностью работы импульсных трансформаторов является то, что на их первичную обмотку поступают однополярные импульсы, которые содержат постоянную составляющую тока, поэтому сердечник работает с постоянным подмагничиванием.

Импульсные трансформаторы применяются в устройствах связи, автоматики, вычислительной техники, при работе короткими импульсами, для изменения их амплитуды и полярности, исключения постоянной.

Импульсный трансформатор в чем основные отличие от обычного

У импульсного трансформатора (ИП) в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

Основные отличия:

  1. Размер — импульсного трансформатора  обратно пропорционален его рабочей частоте.
  2. Работает трансформатор импульсный от обычного в другой частоте входного напряжения.

В настоящее время большинство блоков питания выполняют на импульсных трансформаторах. Здесь снижение затрат на производство, удешевление стоимости изделия, экономия размеров и веса.

Наиболее важной функцией импульсников является стабилизация напряжения выхода в рабочем режиме.

Другой областью их использования является защита от короткого замыкания на нагрузке при холостом ходе, и защита от чрезмерного возрастания напряжения, а также перегрева устройств.

Особенности конструкций

Основной особенностью конструкции импульсных трансформаторов является малое число витков. Наиболее экономичными стали тороидальные устройства, а менее экономными – бронестержневые. См. Виды магнитопроводов 

Цилиндрическая обмотка обладает свойством малой индуктивности рассеяния, имеет простую конструкцию и технологична в изготовлении. Расположение и число слоев может быть различным, так же, как и схемы их соединений.

Виды обмоток импульсных трансформаторов

Спиральные

Применяются для трансформаторов с наименьшей индуктивностью рассеяния. Их применение целесообразно при автотрансформаторном подключении. Намотка производится тонкой и широкой фольгой или лентой.

Конические

Предназначены для снижения индуктивного рассеяния с незначительным повышением емкости обмоток. Их особенностью является толщина изоляции слоев, которая прямо зависит от напряжения между витками первичной и вторичной обмотки. Толщина изоляции повышается от начала к концу обмоток по линейной зависимости.

Цилиндрические

Имеют низкую индуктивность рассеяния, хорошую технологичность и простую конструкцию.

Потери энергии

Важной проблемой при создании конструкции импульсных трансформаторов является снижение потерь энергии и повышение его КПД.

Потери складываются из:

  • Потери от гистерезиса.
  • Магнитной вязкости.
  • Некачественная изоляция.
  • Вихревые токи.

Кроме простого расчета потерь, для магнитопровода используют высоколегированные марки стали. Это позволяет уменьшить потери и приблизить форму петли гистерезиса к форме прямоугольника. Такие материалы предназначены для обеспечения значительных параметров индукции.

Вихревые токи искусственно разъединяют. А также применяют конструкции магнитных систем с наибольшей магнитной проницаемостью. Такими способами добиваются стабильных параметров вихревого тока в магнитопроводе.

Применяемые материалы

Вид магнитного материала значительно влияет на показатели качества и работу импульсного режима. Материал изготовления сердечника магнитопровода оценивается по значениям величин, которые определяют качество свойств:

  • Удельное сопротивление применяемых материалов прибора.
  • Индукция насыщения.
  • Возможность применения самых тонких листов стали или лент.
  • Коэрцитивная сила.

Электротехническая сталь

Импульсные трансформаторы предпочтительно оснащать магнитопроводами, изготовленными из электротехнической стали марок от 3405 до 3425, которые имеют наиболее высокие значения индукции насыщения и низкие параметры коэрцитивной силы, а также наибольшее значение величины прямоугольности формы петли гистерезисного цикла. Такой материал в настоящее время приобрел большую популярность.

Пермаллой

Этот материал является прецизионным сплавом, обладающим магнито-мягкими свойствами. Он чаще всего состоит из железа и никеля, с добавлением легирующих элементов.

Ферриты

Другим очень востребованным материалом для изготовления импульсных трансформаторов, а точнее, его сердечника являются ферритовые материалы. Они имеют малую длительность трансформируемых импульсов. Такие магнитопроводы обладают повышенным удельным сопротивлением и не имеют потерь от вихревых токов. Они применяются для импульсных трансформаторов с интервалом импульсов, который измеряется несколькими наносекундами.

Система обозначений и маркировки импульсных трансформаторов включает в себя следующие элементы:

  • Первый – буква – Т,
  • Второй – буква И (импульсный) или сочетание букв ИМ. Буква И соответствует трансформаторам с длительностью входного импульса от 0,5 до 100 мкс, а ИМ – от 0,02 до 100 мкс.
  • Третий – число порядковый номер разработки.

Например: обозначение ТИ-5 – трансформатор импульсный с длительностью входного импульса от 0,5 до 100 мкс, номер разработки 5

Видео: Импульсный трансформатор

Импульсный трансформатор принцип работы

Принцип работы импульсных трансформаторов   заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

схема работы импульсного трансформатора

схема работы импульсного трансформатора. Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L0/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax – Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещения
График смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

при этом:

  • Ψ – параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке импульсного трансформатора, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Um x tu=S x W1 x ∆В

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, – перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

формула

Здесь:

  • L0 – перепад индукции;
  • µа – магнитная проницаемость сердечника;
  • W1 – число витков первичной обмотки;
  • S – площадь сечения сердечника;
  • l – длинна (периметр) сердечника (магнитопровода)
  • Вr – величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm – Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности импульсного трансформатора полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным импульсным трансформатором идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Видео: Как работает импульсный трансформатор / трансформатор своими руками / демонстрация

Импульсный трансформатор: 5 комментариев

  1. Аватар

    Всем привет. Подскажите как проверить импульсный трансформатор.

    • Admin

      Проверка импульсного тр-ра мультиметром путём прозвонки вторичных и первичных обмоток, замера напряжений и построения вольт-амперной характеристики. См. здесь.

  2. Аватар

    В импульсных преобразователях трансформатор практически не выходит из строя, так что проверять его надо в последнюю очередь после всех деталей. В моей практике более 30 лет видел 2 дохлых трансформатора. В одном сердечник расклеился другой сожгли сами владельцы.

  3. Аватар

    Доброго времени суток!
    Хотелось -бы собрать тестер для проверки импульсных трансформаторов LOPT/FBT tester Боба Паркера (К7205),
    может у кого нибудь завалялась печатная плата в формате LAY

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

двадцать − 16 =