Измерительные трансформаторы тока и напряжения

Измерительные трансформаторы тока и напряжения позволяют обеспечить безопасность измерений, стандартизировать приборы и реле, рассчитывая их обмотки на ток 5А и напряжение 100В, защитить приборы и реле от токов короткого замыкания.

Трансформаторы тока и напряжения состоят из магнитопровода, первичной и вторичной обмоток, изоляции между обмотками. Вторичные обмотки трансформатора, так же как и металлические нетоковедущие части конструкций, заземляют, чтобы устранить опасность появления высокого напряжения на приборах и реле при пробое изоляции между первичной и вторичной обмотками. Приборы, питающиеся от измерительных трансформаторов, градуируют по первичному значению, при этом на шкале показывают коэффициент трансформации.

Трансформаторы тока выпускают только в однофазном исполнении для раздельного включения на каждую фазу.

В зависимости от назначения измерений в трёхфазной сети применяют один, два или три трансформатора тока. Их изготавливают на всю шкалу токов и напряжений.

Схема включения трансформатора тока
Рисунок 1 Схема включения трансформатора тока

Первичную обмотку I включают последовательно в контролируемую (измеряемую) цепь, а к вторичной обмотке 2 трансформатора последовательно включают токовые обмотки приборов и реле. Соотношение номинальных первичного и вторичного токов определяется номинальным коэффициентом трансформации:

Коэффициент трансформации трансформаторов тока — величина не строго постоянная и может отличаться от номинального значения из-за погрешности, обусловленной наличием тока намагничивания.

Различают токовую, угловую погрешность ?:

Угловая погрешность  характеризует угол сдвига фаз между первичным током и повернутым на 180°током вторичной обмотки. Погрешность по току следует учитывать для всех приборов и реле, а угловую — для приборов ваттметрового типа. Обе погрешности зависят от магнитного сопротивления сердечника, значения первичного тока, нагрузки вторичной обмотки и соотношения её активной и индуктивной составляющих. В отличие от силовых понижающих трансформаторов и измерительных трансформаторов напряжения у понижающего трансформатора тока число витков вторичной обмотки W2 больше (в ряде случаев во много раз) числа витков первичной обмотки W1 (она часто имеет один виток).

Кроме того, особенность трансформатора тока заключается в том, что значение первичного тока I1 не зависит от нагрузки во вторичной цепи (от значения первичного тока I1). Ток определяется только нагрузкой и параметрами первичной цепи, в то время как у трансформаторов напряжения первичный ток зависит от изменения вторичного. Соответственно и магнитный поток первичной обмотки, создаваемый током не изменяется при изменении тока во вторичной цепи. Сопротивление нагрузки вторичной цепи (обычно токовых обмоток приборов, соединительных проводов) весьма невелико. Поэтому трансформатор тока работает в режиме, близком к короткому замыканию, что отличает его от трансформаторов напряжения.

Класс точности трансформаторов тока зависит от токовой погрешности при номинальном первичном токе и от номинальной вторичной нагрузки. Выпускаются трансформаторы тока с классом точности:

  • 0,2 — для лабораторных измерений;
  • 0,5 — для питания расчётных счётчиков; I,
  • 3, 10 или Р — для питания щитовых приборов и реле.

Трансформаторы тока выпускают с первичным током в соответствии со стандартной шкалой первичных номинальных токов. Вторичный номинальный ток почти всех трансформаторов тока принят равным 5А.

Высоковольтные трансформаторы тока расшифровка выполняется следующим образом.

Например, ТПЛУ-10-0,5/3-50

  • означает трансформатор тока (буква Т),
  • проходной (П), с литой изоляцией (Л) из эпоксидных смол,
  • С усиленной первичной обмоткой (У),
  • номинальное напряжение 10 кВ (10), с двумя сердечниками классов точности 0,5 и 3 (0,5/3),
  • первичный ток равен 50А (50).

Включение измерительных трансформаторов тока и напряжения

Измерительные трансформаторы напряжения
Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения предназначены для возможности измерения высокого напряжения электроустановок переменного тока путем снижения этого напряжения для подачи на защитные реле, приборы измерения и системы автоматики.

При отсутствии измерительных трансформаторов понадобилось бы применять приборы и реле с большими габаритными размерами, так как необходима надежная изоляция от высокого напряжения, которая увеличивает размеры устройств. Изготовить такое оборудование практически невозможно, так как напряжения линий могут достигать величины 110 киловольт.

Измерительные трансформаторы для замера напряжения дают возможность применять стандартные обычные приборы для измерений электрических параметров, при этом увеличивая их диапазон измерения. Защитные реле, подключаемые через эти трансформаторы, могут применяться обычного исполнения.

Трансформатор напряже­ния  выполняют в виде двухобмоточного понижа­ющего трансформатора (рис. 3.33,а). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют.

 Рис. 3.33. Схема включения измерительного трансформатора напряжения
Рис. 3.33. Схема включения (а) и век­торная диаграмма измерительного трансформатора напряжения (б)

Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору на­пряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, чтоUl = U’2=U2k.

В действительности ток холостого хода I0 (а также не­большой ток нагрузки) создает в трансформаторе падение напряжения, поэтому, как видно из векторной диаграммы (рис. 3.33, б), и между векторами этих напряжений имеется некоторый сдвиг по фазе δu. В результате при изме­рениях образуются некоторые погрешности.

Трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений.

Трансформаторы тока для электросчетчиков

Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер. Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.

подключение трехфазного счетчика через измерительные трансформаторы

Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.

Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.

Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2.

Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника.

Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

4 × пять =