Содержание:
Магнитопровод силового трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.
Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.
Виды магнитопроводов трансформаторов бывают:
1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.
Правда, кольцевых штампованных магнитопроводов я никогда не видел.
Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.
Стыковая конструкция
В такой конструкции сборка ярм и стержней осуществляется раздельно. Вначале на стержень монтируют обмотку, после этого крепят верхнее ярмо. Для изоляции пластин между стыкующимися элементами укладывают электрокартон. После монтажа ярма, конструкция прессуется и стягивается с помощью вертикальных шпилек. Такой тип сборки применяется для шунтирующих и токоограничивающих реакторов. Зависит это, в основном, от габаритов установки. При небольших размерах конечного изделия, такая сборка очень удобна, так как нужно лишь снять верхнее ярмо для монтажа обмоток.
Когда речь идет о применении такой конструкции в силовых трансформаторах, возникает потребность в громоздких устройствах для стяжки изделия. Поверхности стержней и ярм, подлежащих стыковке, должны быть механически обработаны. Это снижает магнитное сопротивление, но требует больших материальных затрат и времени. Поэтому для силовых трансформаторов применяется другой вид сборки – шихтовка.
Шихтованная конструкция
В такой конструкции ярма и стержни представляют собой переплет. Их разбивают на слои определенной толщины. Состоит каждый такой пакет из двух-трех листов стали. Каждый слой содержит пластины, часть которых должна заходить в ярмо. Необходимо следить за тем, чтобы пластины предыдущего слоя перекрывали стыки пластин соседнего элемента.
Преимуществом такого вида сборки являются:
- небольшой вес конструкции;
- малые зазоры в зонах стыков;
- малый ток холостого хода;
- повышенная механическая прочность.
Из недостатков можно выделить фактор более сложной сборки трансформатора.
Сначала необходимо произвести расшихтовку верхнего ярма на отдельные слои. Затем обмотки насаживают на стержни и повторяют шихтование. Это делает монтаж более трудоемким. Проводить его должен квалифицированный специалист, так как некачественная сборка может ухудшить технические параметры трансформатора.
Влияние некачественной сборки на характеристики изделия
Наиболее распространенным дефектом собранной конструкции может быть плохая стыковка ярма с пластинами стержня. Вследствие этого, появившиеся зазоры приведут к возрастанию тока холостого хода (Iхх) трансформатора. Также ухудшится магнитный поток.
Если при сборке изделия количество пластин, входящих в ярмо, будет менее требуемого, то это вызовет уменьшение поперечного сечения, что спровоцирует рост магнитной индукции и увеличение потерь на холостом ходу. Любые механические повреждения пластин магнитопровода, во время шихтовки, также вызовут ухудшение технических параметров трансформатора.
Конструкция магнитопроводов силовых трансформаторов
У броневых магнитопроводов сечения стержней прямоугольные, а стержневые и бронестержневые магнитопроводы имеют в сечении вид многоугольника, вписанного в окружность (рисунок 8, а, б). В этом случае обмотки имеют вид круговых цилиндров и вследствие ступенчатого сечения магнитопровода коэффициент заполнения сталью полости обмотки получается большим. Такая конструкция с точки зрения расхода материалов, уменьшения габаритов и стоимости изготовления трансформатора, а также механической прочности обмоток является наиболее рациональной. Число ступеней магнитопровода увеличивается с увеличением мощности. В мощных трансформаторах в сечении магнитопровода предусматриваются каналы для его охлаждения циркулирующим трансформаторным маслом (рисунок 8, б).
Для упрощения технологии изготовления ярем их сечение берется прямоугольным или с небольшим числом ступеней (рисунок 9). Форма сечения ярма и его сочленение со стержнем выбираются с учетом обеспечения равномерного распределения магнитного потока в сечении магнитопровода. Площади сечения ярем выбираются так, чтобы индукция в них была на 10 – 15% меньше, чем в стержнях. Стяжка стержней трансформаторов средней (до 800 – 1000 кВ×А) и большой мощности показана на рисунках 10 и 11. Ярма трансформаторов стягиваются с помощью деревянных или стальных балок. Для весьма мощных трансформаторов применяются и более сложные конструкции магнитопроводов.
Стержни магнитопроводов во избежание распушения спрессовывают (скрепляют). Делают это обычно наложением на стержень бандажа из стеклоленты или стальной проволоки. Стальной бандаж выполняют с изолирующей пряжкой, что исключает создание замкнутых стальных витков на стержнях. Бандаж накладывают равномерно, с определенным натягом. Для опрессовки ярм 3 и мест их сочленения со стержнями 1 используют ярмовые балки 2, которые в местах, выходящих за крайние стержни (рис. 18), стягивают шпильками.
Во избежание возникновения разности потенциалов между металлическими частями во время работы трансформатора, что может вызвать пробой изоляционных промежутков, разделяющих эти части, магнитопровод и детали его крепления обязательно заземляют. Заземление осуществляют медными лентами, вставляемыми между стальными пластинами магнитопровода одними концами и прикрепляемыми к ярмовым балкам другими концами.
Магнитопроводы трансформаторов малой мощности (обычно мощностью не более 1 кВ·А) чаще всего изготовляют из узкой ленты электротехнической холоднокатаной стали путем навивки. Такие магнитопроводы делают разрезными (рис. 1.9), а после насадки обмоток собирают встык и стягивают специальными хомутами.
В однофазных трансформаторах весьма малой мощности (до 150 – 200 В×А) применяется броневая конструкция магнитопроводов. При этом стремятся к наибольшему упрощению их изготовления и сборки, а также к уменьшению отходов листовой стали. Обычно штамповка листов магнитопровода производится по одному из вариантов, изображенных на рисунках 12 и 13. В первом случае лист вырубается одним ударом штампа и имеет прорезь n; при сборке средний лепесток временно отгибается и вводится внутрь катушки обмотки, лепесток последующего листа вводится внутрь катушки с противоположного, торцевого, ее конца и так далее. Во втором случае одновременно вырубаются Ш-образные листы Ш1 и Ш2 и ярмовые листы Я1 и Я2 (рисунок 13, а), из которых составляются два слоя листов магнитопровода (рисунок 13, б). При этом листы вводятся внутрь катушки также поочередно с одного и второго ее конца.
Магнитопроводы силовых трансформаторов собираются из листов электротехнической стали толщиной 0,35 или 0,5 мм марок 1511, 1512, 1513 или 3411, 3412, 3413. Применение холоднокатаной стали в последние годы все больше расширяется.
Межлистовая изоляция осуществляется путем односторонней оклейки листов стали изоляционной бумагой толщиной 0,03 мм или двустороннего покрытия изоляционным масляным лаком.
Индукции в стержнях трансформаторов мощностью 5 кВ×А и выше находится в пределах 1,2 – 1,45 Т для горячекатаных сталей и 1,5 – 1,7 Т для холоднокатаных сталей у масляных трансформаторов и соответственно 1,0 – 1,2 Т и 1,1 – 1,5 Т у сухих трансформаторов.
Видео: Трансформатор. Ликбез по магнитопроводу
Сегодня поговорим о такой теме как сердечник трансформатора.
Здравствуйте всем!
Посоветуйте, пожалуйста, подходящий материал магнитопровода для трансформатора?
Магнитопроводы выбирают в соответствии с целесообразностью для конкретного применения.
Например, в аппаратуре широкого применения (бытовая радиоэлектроника) при производстве, критерием оптимальности может выступать минимальная стоимость магнитопровода и обмоточного провода, экономичность производства и некоторые другие специфические критерии (метеорологические зонды, самолеты и т.п.)
Для чего нужен магнитопровод в трансформаторе?
Магнитопровод нужен для более эффективной передачи энергии из одной обмотки в другую через магнитное поле, почти полностью концентрирующегося в материале сердечника. Без сердечника бы огромная часть магнитного поля первичной обмотки впустую «развеялась» в пространстве, так и не приняв участия в индукции тока в другой обмотке.
С чем связано то что первичная и вторичная обмотки силовых трансформаторов наматываются одна на другую?
Все это для уменьшения потерь магнитного потока. Трансформатор, как и любая электрическая машина, основана на преобразовании магнитного поля в электрическое и наоборот. Вот и чем меньше потери энергии в таком устройстве, тем больше его кпд.